2025/6/5 M |8:43 Chung-Shu Chen - Resume

I am a compiler developer with solid experience in LLVM CPU and GPU backends, the LLD
linker, NPU/ONNX, C++, OpenGL/GLSL, simulators, and more. | enjoy working on compilers
and related technologies.

RESUME

QUALIFICATION
Over 20 years of experience in C/C++ programming, with 13 years focused on compiler

SKILLS
Linux programming (device driver, usb, cmake...) | | [Quality
CPU & GPU design (simulator, Verilog, mips, arm...) |:|
Compiler design (clang/livm, glsl/spirv, onnx, yacc...) | \

Software engineering (OOP/OOA, design pattern...) |
Ul design (VC, Borland G++, html/css/java script..) [|

Documentation writing(Sphinx, uml, ..) []

Equipment usage (scope, power meter, ...) |:|
0 5 10 15 20

MY OPEN SOURCE PROJECT

I'm proud that my work is featured in the official LLVM documentation under http://llvm.org/docs/tutorial/#external-tutorials.

Tutorial: Create an LLVM Backend Compiler Q http://jonathan2251.github.io/lbd/index.html
Tutorial: Create an LLVM Backend Toolchain Qhttp://ionathan2251.2ithub.io/|bt/index.html
The Concept of a GPU Compiler Omp:_//jonathanZZS 1.github.io/Ibd/gpu.html

EDUCATION
Master’s Degree, Information Science, National Taiwan Normal University (B1L & &Bf#E AE2), Taipei — June 1999

Bachelor’s Degree, Industrial Engineering, National Taiwan University of Science and Technology (Bl 11 &8 %5 K E2), Taipei —

June 1994
LICENSE
National Senior Technician Certificate in Information Technology (% &%= & :l#%), Taiwan — 1995
EXPERIENCE
current
GPU Compiler Developer at MediaTek
March 2023

Al Compiler Developer at Lightelligence
Clang/LLVM-based Compiler for Optical Computing

b

August 2021
GPU Compiler Developer at Biren

In-house Cuda-like language compiler based on Clang/LLVM for our GPU
October 2020

et

NPU Compiler Developer at Kneron
Compiler from ONMX to NFU ISA

e

July 2019 €
Principle Engineer at Hisilcon

LLVM-based GLSL/SPIR-V to GFU ISA compiler

April 2017
I LLVM-based CPU Compiler for the LLVM Open Source Project
Movember 2016
CPU Compiler Developer at Marvell (llvm open source team at my personal time)
LLWVM optimization and simulator for ARM SoC
March 2013
LLVM-based CPU Compiler for the LLVM Open Source Project
August 2012
Senior Software Engineer at Motorola
September 2004
Software Engineer for multiple companies in Talwan
June 1999
Master’s Thesis PhD Study Proposal

x The Researches of Column Sort and Related Problems x The Researches of Sorting Network and Related Algorithm

" on the above link.

Conference Paper: Search for "

OTHER WORK

Took a course in image processing and developed Jpeg decoder

Web and javascript: As my resume and my personal web site
Graphivz: as some graph diagrams used in this CV. Source code: mywork 1.gv and study and apply.gv

file:///Users/chungshu/git/ws/en/cv_cschen.html

http://llvm.org/docs/tutorial/#external-tutorials
http://jonathan2251.github.io/lbd/index.html
http://jonathan2251.github.io/lbd/index.html
http://jonathan2251.github.io/lbt/index.html
http://jonathan2251.github.io/lbt/index.html
http://jonathan2251.github.io/lbd/gpu.html
http://jonathan2251.github.io/lbd/gpu.html
https://github.com/Jonathan2251/ow/tree/master/sortingnetwork/ThesisMaster
https://github.com/Jonathan2251/ow/tree/master/sortingnetwork/ThesisMaster
http://w1.csie.ntnu.edu.tw/~linss/publications.htm
https://github.com/Jonathan2251/ow/tree/master/sortingnetwork/PHD
https://github.com/Jonathan2251/ow/tree/master/sortingnetwork/PHD
https://github.com/Jonathan2251/ow/tree/master/master-homework/image_processing/JPEG
https://jonathan2251.github.io/ws/en/resume_cschen.html
https://jonathan2251.github.io/ws/en/index.html
http://www.graphviz.org/
https://jonathan2251.github.io/ws/images/mywork_1.gv
https://jonathan2251.github.io/ws/images/study_and_apply.gv

2025/6/5 M |8:43 Chung-Shu Chen - Resume

ACHIEVEMENT
Lightelligence
Developed a RISC-V backend compiler for Lightelligence’s optical NPU:

1. Built full RISC-V toolchain (GCC, LLVM, QEMU/Gem5); evaluated vendors and costs.

2. Led Aurora software development; implemented compiler backend.

3. Created TaskGraph in C++ compiler with Runtime integration for DL graph support.
Biren

Built an in-house Cuda-like compiler using Clang/LLVM for our GPU:

1. Implemented GPU codegen for tensor ops and usharpid.

2. Optimized performance and resolved bugs.

3. Proposed parallelism via async{...}.

Kneron
NPU Compiler Developer:

1. Rebuilt the top two layers to support a unified graph across NPUs.
2. Added input support for encrypted ONNX and config files.
3. Validated MLIR integration solutions.

Hisilcon
Scope of GPU Compiler Work:

aslang Velidator

GLSL ES-LIR Translator

SPIRV-LIR Translator

GLSL ES (OpenGL)

GPU ISA in Assembly and Binary
OpenCL-SPIRV Translator SPIRV-LLVM Translator

Compared our GPU compiler with the ARM-licensed version (yellow nodes); ~20% of frontend and 50% of backend modified,
based on lines of code.

My Contributions:
1. Implemented ~80% of texture-related frontend/LLVM backend per OpenGL ES 3.2; wrote documentation.
2. Supported and reviewed the remaining 20% with team and texture lead.
3. Developed Prefetch-Sample optimization for driver-level texture sampling.

4, Added compiler support for Vulkan load/store ops with RGBA fixed-point formats (32, 16, 11, 10, 2 bits) and NaN/Inf
handling; documented feature.
Marvell
LLVM Optimization and Simulator for ARM SoC:
1. Built a semi-automated system for benchmarking and reporting on the GCC toolchain.

2. Introduced Polly (loop optimization) and polyhedral model to improve LLVM/GCC at Marvell.

Effect of polly (standard data size)

Tile size 32 on BG2

mClang 03
OPaily -tile

%ﬂﬂhhﬂ ok ﬂﬂﬂﬂmﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂh

fowd-2d floyd-warshell gemver jacobi-ld-imper lu seidel-2d trmm
2mm dmgen uyuprog fard-apmi gemm gesummy jacobi-20-imper \uacmu reg_uslea svmm

Benchmark polybench-c-3.2

Speedup relative o ciang-03
"
"

3. Developed a co-simulator for Marvell’s 64-bit ARM CPUs, including a DSL that reduced C++ verification code.
4. Migrated CSim from Make to CMake for a simpler, cross-platform build system.

LLVM Open Source Project

The lower half of diagram below illustrates the workflow of my LLVM backend. The yellow and green sections represent
components | implemented, as documented in my tutorials.

Compiler flow

userprogram
— q a
frontend —IRb backend —Ob-]—b linker —=%€ g Joader L& computer
.
Cpu0 flow
userprogram
IR - 1le obj exe hex

Verilog machine

Motorola
Developed the software framework for Set-Top Box systems.

file:///Users/chungshu/git/ws/en/cv_cschen.html 2/3

https://github.com/Jonathan2251/ws/blob/master/ref/async_explain
https://www.khronos.org/registry/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html#texture-functions

2025/6/5 Hf 1-8:43

Chung-Shu Chen - Resume

Learning Beyond School and Applying It at Work

CPU:

Computer Architecture —A Quantitative Approach
Mips and Broadcom CPU user manual
Verilog

GPU:

OpenGL/glsl and spirv spec
Mali frontend and backend
Cuda-like language
GPU ISA

NPU:

Onnx and Deep Learning Concept
NPU ISA

COMPILER:

llvm frontend & backend, Ild and compiler-rt
Compilers — Principles, Techniques, & tools
polly open source
yace and lex

SOFTWARE ENGINEERING:
Design Patterns

OOA Analysis related books and tools (Rational Rose, ...

0S:
Linux Device Driver

Cpu0 lld backend linker, software floating lib

Cpu0 llvm backend

ARM compiler optimization

tiny OS for scheduling of test items
1/0 redirection mechanism

References

Recommendation Letter from Former Manager: https://jonathan2251.github.io/ws/en/RL Marvell.pdf

file:///Users/chungshu/git/ws/en/cv_cschen.html

3/3

https://jonathan2251.github.io/ws/en/RL_Marvell.pdf

